Здравствуйте, уважаемые читатели!
«Турбинная» тема настолько же сложна, насколько и обширна. Поэтому о полном ее раскрытии говорить, конечно, не приходится. Займемся, как всегда, «общим знакомством» и «отдельными интересными моментами»…
При этом история турбины авиационной совсем коротка по сравнению с историей турбины вообще. Значит не обойтись без некоего теоретически-исторического экскурса, содержание которого по большей части к авиации не относится, но является базой для рассказа об использования газовой турбины в авиационных двигателях.
Про гул и грохот…
Начнем несколько нетрадиционно и вспомним о «гуле турбин». Это довольно распространенное словосочетание, используемое обычно неискушенными авторами в СМИ при описании работы мощной авиационной техники. Сюда же можно присоединить «грохот, свист» и прочие громкие определения для все тех же «самолетных турбин».
Достаточно привычные слова для многих. Однако, людям понимающим хорошо известно, что на самом деле все эти «звуковые» эпитеты чаще всего характеризуют работу реактивных двигателей в целом или его частей, имеющих к турбинам, как таковым, крайне малое отношение (за исключением, конечно, взаимовлияния при их совместной работе в общем цикле ТРД).
Более того, в турбореактивном двигателе (как раз такие являются объектом восторженных отзывов), как двигателе прямой реакции, создающем тягу путем использования реакции газовой струи, турбина всего лишь его часть и к «грохочущего реву» имеет скорее косвенное отношение.
А на тех двигателях, где она, как узел, играет, в некотором роде, главенствующую роль ( это двигатели непрямой реакции, и они не зря зовутся газотурбинными), уже нет столь впечатляющего звука, или он создается совсем иными частями силовой установки летательного аппарата, например, воздушным винтом.
То есть ни гул, ни грохот, как таковые, к авиационной турбине на самом деле не относятся. Однако, несмотря на такую звуковую неэффектность, она является сложным и очень важным агрегатом современного ТРД (ГТД), зачастую определяющим его главные эксплуатационные характеристики. Ни один ГТД без турбины просто по определению обойтись не может.
Поэтому и разговор, конечно, не о впечатляющих звуках и некорректном использовании определений русского языка, а об интересном агрегате и его отношении к авиации, хотя это и далеко не единственная область его применения. Как техническое устройство турбина появилась задолго до возникновения самого понятия «летательный аппарат» (или аэроплан) и уж тем более газотурбинного двигателя для него.
История + немного теории…
И даже очень задолго. С тех самых пор, когда были изобретены механизмы, преобразующие энергию сил природы в полезное действие. Наиболее простыми в этом плане и поэтому одними из первых появившихся стали так называемые ротационные двигатели.
Само это определение, конечно, появилось только в наши дни. Однако, смысл его как раз и определяет простоту двигателя. Природная энергия непосредственно, без каких-либо промежуточных устройств превращается в механическую мощность вращательного движения основного силового элемента такого двигателя – вала.
Турбина – типичный представитель ротационного двигателя. Забегая вперед, можно сказать, что, например, в поршневом двигателе внутреннего сгорания (ДВС) основной элемент – это поршень. Он совершает возвратно-поступательное движение, и для получения вращения выходного вала нужно иметь дополнительный кривошипно-шатунный механизм, что, естественно, усложняет и утяжеляет конструкцию. Турбина в этом плане значительно выгодней.
Для ДВС ротационного типа, как теплового двигателя, коим, кстати, является и двигатель турбореактивный, употребляется обычно название «роторный».
Одними из самых известных и самых древних применений турбины являются большие механические мельницы, используемые человеком с незапамятных времен для различных хозяйственных нужд (не только для помола зерна). К ним относятся как водяные, так и ветряные механизмы.
На протяжении длительного периода древней истории (первые упоминания примерно со 2-го века до н.э.) и истории средних веков это были фактически единственные механизмы, используемые человеком для практических целей. Возможность их применения при всей примитивности технических обстоятельств заключалась в простоте трансформации энергии используемого рабочего тела (воды, воздуха).
В этих, по сути дела, настоящих ротационных двигателях энергия водяного или воздушного потока превращается в мощность на валу и, в конечном итоге, полезную работу. Происходит это при взаимодействии потока с рабочими же поверхностями, коими являются лопатки водяного колеса или крылья ветряной мельницы. И то и другое, по сути дела – прообраз лопаток современных лопаточных машин, которыми и являются используемые ныне турбины (и компрессоры, кстати, тоже).
Известен еще один тип турбины, впервые документально упомянутый (по-видимому и изобретенный) древнегреческим ученым, механиком, математиком и естествоиспытателем Героном Александрийским (Heron ho Alexandreus, 1-ый век н.э.) в его трактате «Пневматика». Описанное им изобретение получило название эолипил, что в переводе с греческого означает «шар Эола» (бог ветра, Αἴολος – Эол (греч.), pila – шар (лат.)).
В нем шар был снабжен двумя противоположно направленными трубками-соплами. Из сопел выходил пар, поступавший в шар по трубам из расположенного ниже котла и заставлявший тем самым шар вращаться. Действие понятно из приведенного рисунка. Это была так называемая обращенная турбина, вращающаяся в сторону, обратную стороне выхода пара. Турбины такого типа имеют специальное название – реактивные (подробнее – ниже).
Интересно, что сам Герон вряд ли представлял себе, что является рабочим телом в его машине. В ту эпоху пар отождествляли с воздухом, об этом свидетельствует даже название, ведь Эол повелевает ветром, то есть воздухом.
Эолипил представлял из себя, в общем-то, полноценную тепловую машину, превращавшую энергию сжигаемого топлива в механическую энергию вращения на валу. Возможно это была одна из первых в истории тепловых машин. Правда полноценность ее была все же «не полной», так как полезной работы изобретение не совершало.
Эолипил в числе других известных в то время механизмов входил в комплект так называемого «театра автоматов», имевшего большую популярность в последующие века, и был фактически просто интересной игрушкой с непонятным будущим.
От момента его создания и вообще от той эпохи, когда люди в своих первых механизмах использовали только «явно проявляющие себя» силы природы (сила ветра или сила тяжести падающей воды) до начала уверенного использования тепловой энергии топлива во вновь созданных тепловых машинах прошла не одна сотня лет.
Первыми такими агрегатами стали паровые машины. Настоящие действующие экземпляры были изобретены и построены в Англии только к концу 17-го века и использовались для откачки воды из угольных копей. Позже появились паровые машины с поршневым механизмом.
В дальнейшем, по мере развития технических знаний, «на сцену вышли» поршневые двигатели внутреннего сгорания различных конструкций, более совершенные и обладающие более высоким КПД механизмы. Они уже использовали в качестве рабочего тела газ (продукты сгорания) и не требовали для его подогрева громоздких паровых котлов.
Турбины в качестве главных узлов тепловых машин, также прошли в своем развитии похожий путь. И хотя отдельные упоминания о некоторых экземплярах имеются в истории, но заслуживающие внимания и к тому же документально отмеченные, в том числе и запатентованные, агрегаты появились только во второй половине 19-го века.
Началось все с пара…
Именно с использованием этого рабочего тела были отработаны практически все базовые принципы устройства турбины (в дальнейшем и газовой), как важной части тепловой машины.
Достаточно характерными в этом плане стали разработки талантливого шведского инженера и изобретателя Густава де Лаваля (Karl Gustaf Patrik de Laval). Его тогдашние исследования были связаны с идеей разработки нового молочного сепаратора с повышенными оборотами привода, что позволяло значительно повысить производительность.
Получить большую частоту вращения (обороты) путем использования уже традиционного тогда (впрочем и единственно существовавшего) поршневого парового двигателя не представлялось возможным из-за большой инерционности самого главного элемента – поршня. Понимая это, Лаваль решил попробовать отказаться от использования поршня.
Рассказывают, что сама идея возникла у него при наблюдении за работой пескоструйных аппаратов. В 1883 году он получил свой первый патент (английский патент №1622) в этой области. Запатентованное устройство носило название «Турбина, работающая паром и водой».
Оно представляло из себя S-образную трубку, на концах которой были выполнены сужающиеся сопла. Трубка была насажена на полый вал, через который к соплам подавался пар. Принципиально все это ничем не отличалось от эолипила Герона Александрийского.
Изготовленное устройство работало достаточно надежно с большими для техники того времени оборотами – 42000 об/мин. Скорость вращения достигала 200 м/с. Но при столь хороших параметрах турбина обладала чрезвычайно низким КПД. И попытки его увеличения при существовавшем уровне техники ни к чему не привели. Почему же так получилось?
——————-
Немного теории… Чуть подробней об особенностях….
Упомянутый КПД (для современных авиационных турбин это так называемый мощностной или эффективный КПД) характеризует эффективность использования затраченной энергии (располагаемой) для приведения в движение вала турбины. То есть какая часть этой энергии была потрачена полезно на вращение вала, а какая «вылетела в трубу».
Именно вылетела. Для описанного типа турбины, называемого реактивным, это выражение как раз подходит. Такое устройство получает вращательное движение на валу под действием силы реакции выходящей струи газа (или в данном случае пара).
Турбина, как динамическая расширительная машина, в отличие от объемных машин (поршневых) требует для своей работы не только сжатия и нагрева рабочего тела (газа, пара), но и его разгона. Здесь расширение (увеличение удельного объема) и падение давления происходит вследствие разгона, в частности в сопле. В поршневом двигателе это имеет место из-за увеличения объема камеры цилиндра.
В итоге, та большая потенциальная энергия рабочего тела, которая образовалась в результате подвода к нему тепловой энергии сгоревшего топлива, превращается в кинетическую (минус различные потери, конечно). А кинетическая (в реактивной турбине) посредством сил реакции – в механическую работу на валу.
И вот о том, насколько полно кинетическая энергия переходит в механическую в данной ситуации и говорит нам КПД. Чем он выше, тем меньшей кинетической энергией обладает поток, выходящий из сопла в окружающую среду. Эта оставшаяся энергия называется «потерями с выходной скоростью», и она прямо пропорциональна квадрату скорости выходящего потока (все наверняка помнят mС2/2).
Здесь речь идет о так называемой абсолютной скорости С. Ведь выходящий поток, точнее говоря каждая его частица, участвует в сложном движении: прямолинейное плюс вращательное. Таким образом, абсолютная скорость С (относительно неподвижной системы координат) равна сумме скорости вращения турбины U и относительной скорости потока W (скорость относительно сопла). Сумма конечно векторная, показана на рисунке.
Минимальные потери (и максимальный КПД) соответствуют минимальной скорости С, в идеале, она должна быть равна нулю. А это возможно только в случае равенства W и U (видно из рисунка). Окружная скорость (U) в этом случае называется оптимальной.
Такое равенство несложно было бы обеспечить на гидравлических турбинах (типа сегнерова колеса), так как скорость истечения жидкости из сопел для них ( аналогичная скорости W) относительно невелика.
Но эта же самая скорость W для газа или пара из-за большой разницы плотностей жидкости и газа значительно больше. Так, при относительно небольшом давлении всего 5 атм. гидравлическая турбина может дать скорость истечения всего 31 м/с, а паровая — 455 м/с. То есть получается, что уже при достаточно низких давлениях (всего-то 5 атм.) реактивная турбина Лаваля должна была из соображений обеспечения высокого КПД иметь окружную скорость выше 450 м/с.
Для тогдашнего уровня развития техники это было просто невозможно. Нельзя было сделать надежную конструкцию с такими параметрами. Уменьшать же оптимальную окружную скорость путем уменьшения относительной (W) тоже смысла не имело, так как это можно сделать лишь уменьшая температуру и давление, а значит и общую эффективность.
Активная турбина Лаваля…
Дальнейшему совершенствованию реактивная турбина Лаваля не поддавалась. Несмотря на предпринятые попытки, дела зашли в тупик. Тогда инженер пошел по другому пути. В 1889 году им была запатентована турбина другого типа, получившая впоследствии название активной. За рубежом (в английском) она сейчас носит название impulse turbine, то есть импульсная.
Заявленное в патенте устройство состояло из одного или нескольких неподвижных сопел, подводящих пар к ковшеобразным лопаткам, укрепленным на ободе подвижного рабочего турбинного колеса (или диска).
Рабочий процесс в такой турбине имеет следующий вид. Пар разгоняется в соплах с ростом кинетической энергии и падением давления и попадает на рабочие лопатки, на их вогнутую часть. В результате воздействия на лопатки рабочего колеса оно начинает вращаться. Или еще можно сказать, что вращение возникает из-за импульсного воздействия струи. Отсюда и английское название impulse turbine.
При этом в межлопаточных каналах, имеющих практически постоянное поперечное сечение, поток свою скорость (W) и давление не меняет, но меняет направление, то есть разворачивается на большие углы (вплоть до 180°). То есть имеем при выходе из сопла и на входе в межлопаточный канал: абсолютная скорость С1, относительная W1, окружная скорость U.
На выходе соответственно С2, W2, и такая же U. При этом W1= W2, С2< С1 – из-за того, что часть кинетической энергии входящего потока превращается в механическую на валу турбины (импульсное воздействие) и абсолютная скорость падает.
Принципиально этот процесс показан на упрощенном рисунке. Также для упрощения объяснения процесса здесь принято, что вектора абсолютных и окружных скоростей практически параллельны, поток меняет направление в рабочем колесе на 180°.
Если рассматривать скорости в абсолютных величинах, то видно, что W1= С1 – U, а C2 = W2 — U. Таким образом, исходя из сказанного, для оптимального режима, когда КПД принимает максимальные значения, и потери с выходной скорости стремятся к минимуму (то есть С2=0) имеем С1=2U или U=C1/2.
Получаем, что для активной турбины оптимальная окружная скорость вдвое меньше скорости истечения из сопла, то есть такая турбина по сравнению с реактивной вдвое менее нагружена и задача получения более высокого КПД облегчается.
Поэтому в дальнейшем Лаваль продолжал развивать именно такой тип турбины. Однако, несмотря на снижение требуемой окружной скорости, она все же оставалась достаточно большой, что повлекло за собой столь же большие центробежные и вибрационные нагрузки.
Следствием этого стали конструктивные и прочностные проблемы, а также проблемы устранения дисбаланса, решаемые часто с большим трудом. Кроме того оставались и другие нерешенные и нерешаемые в тогдашних условиях факторы, в итоге снизившие КПД этой турбины.
К ним относились, например, несовершенство аэродинамики лопаток, вызывающее увеличенные гидравлические потери, а так же пульсационное воздействие отдельных струй пара. Фактически активными лопатками, воспринимающими действие этих струй (или струи) одномоментно могли быть только несколько или даже одна лопатка. Остальные при этом двигались вхолостую, создавая дополнительное сопротивление (в паровой атмосфере).
У такой турбины не было возможностей к увеличению мощности за счет роста температуры и давления пара, так как это привело бы к росту окружной скорости, что было абсолютно неприемлемо из-за все тех же конструктивных проблем.
Кроме того, рост мощности (с ростом окружной скорости) был нецелесообразен еще и по другой причине. Потребителями энергии турбины были малооборотистые по сравнению с ней устройства (планировались к этому электрогенераторы). Поэтому Лавалю пришлось разрабатывать специальные редукторы для кинематического соединения вала турбины с валом потребителя.
Из-за большой разницы в оборотах этих валов редукторы были крайне громоздки и по размерам и массе зачастую значительно превосходили саму турбину. Увеличение же ее мощности повлекло бы за собой еще больший рост размеров таких устройств.
В итоге активная турбина Лаваля представляла из себя относительно маломощный агрегат (работающие экземпляры до 350 л.с.), к тому же дорогой (из-за большого комплекса усовершенствований), а в комплекте с редуктором еще и достаточно громоздкий. Все это делало его неконкурентноспособным и исключало массовое применение.
Любопытен факт того, что конструктивный принцип активной турбины Лаваля на самом деле был изобретен не им. Еще за 250 лет до появления его исследований в Риме в 1629 году была опубликована книга итальянского инженера и архитектора Джованни Бранка (Giovanni Branca) под названием «Le Machine» («Машины»).
В ней среди прочих механизмов было помещено описание «парового колеса», содержавшее все основные узлы, построенные Лавалем: паровой котел, трубка для подачи пара (сопло), рабочее колесо активной турбины и даже редуктор. Таким образом задолго до Лаваля все эти элементы уже были известны, и его заслуга заключалась в том, что он заставил их всех вместе реально работать и занимался крайне сложными вопросами совершенствования механизма в целом.
Интересно, что одной из наиболее известных особенностей его турбины стала конструкция сопла (она отдельно упоминалась в том же патенте), подающего пар на рабочие лопатки. Здесь сопло из обычного сужающегося, как было в реактивной турбине, стало сужающе-расширяющимся. Впоследствии такого типа сопла стали называться соплами Лаваля. Они позволяют разогнать поток газа (пара) до сверхзвука с достаточно малыми потерями. О них рассказано здесь.
Таким образом, главной проблемой, с которой боролся Лаваль, разрабатывая свои турбины, и с которой так и не смог справиться, была большая окружная скорость. Однако, достаточно действенное решение этой проблемы было уже предложено и даже, как это ни странно, самим Лавалем.
Многоступенчатость….
В том же году (1889 г.), когда была запатентована вышеописанная активная турбина, инженером была разработана активная турбина с двумя параллельными рядами рабочих лопаток, укрепленных на одном рабочем колесе (диске). Это была так называемая двухступенчатая турбина.
На рабочие лопатки так же, как и в одноступенчатой, через сопло подавался пар. Между двумя рядами рабочих лопаток был установлен ряд лопаток неподвижных, которые перенаправляли поток, выходящий из лопаток первой ступени на рабочие лопатки второй.
Если использовать предложенный выше упрощенный принцип определения окружной скорости для одноступенчатой реактивной турбины (Лаваля), то выяснится, что для двухступенчатой турбины скорость вращения меньше скорости истечения из сопла уже не в два, а в четыре раза.
Это и есть то самое действенное решение проблемы низкой оптимальной окружной скорости, которое предложил, но не использовал Лаваль и которое активно применяется в современных турбинах, как паровых, так и газовых. Многоступенчатость…
Она означает, что большая располагаемая энергия, приходящаяся на всю турбину может быть некоторым образом поделена на части по числу ступеней, и каждая такая часть срабатывается в отдельной ступени. Чем меньше эта энергия, тем меньше скорость рабочего тела (пара, газа) поступающего на рабочие лопатки и, следовательно, меньше оптимальная окружная скорость.
То есть, изменяя количество ступеней турбины, можно изменять частоту вращения ее вала и, соответственно, менять нагрузку на него. Кроме того многоступенчатость позволяет срабатывать на турбине большие перепады энергии, то есть увеличивать ее мощность, и при этом сохранять высокие показатели КПД.
Лаваль свою двухступенчатую турбину не запатентовал, хотя опытный экземпляр и был изготовлен, поэтому она носит имя американского инженера Ч.Кертиса (колесо (или диск) Кертиса), который в 1896 году получил патент на аналогичное устройство.
Однако, уже гораздо раньше, в 1884 году, английский инженер Чарлз Парсонс (Charles Algernon Parsons) разработал и запатентовал первую настоящую многоступенчатую паровую турбину. Высказываний различных ученых и инженеров по поводу полезности разделения располагаемой энергии по ступеням было много и до него, но он первый воплотил идею в «железо».
При этом его турбина имела особенность, приближавшую ее к современным устройствам. В ней пар расширялся и разгонялся не только в соплах, образованных неподвижными лопатками, но и частично в каналах, образованных специально спрофилированными рабочими лопатками.
Такого типа турбину принято называть реактивной, хотя название это достаточно условно. На самом деле она занимает промежуточное положение между чисто реактивной турбиной Герона-Лаваля и чисто активной Лаваля-Бранка. Рабочие лопатки благодаря своей конструкции совмещают активный и реактивный принципы в общем процессе. Поэтому такую турбину правильней было бы называть активно-реактивной, что часто и делается.
Парсонс работал над различными типами многоступенчатых турбин. Среди его конструкций были не только вышеописанные осевые (рабочее тело перемещается вдоль оси вращения), но и радиальные (пар перемещается в радиальном направлении). Достаточно хорошо известна его трехступенчатая чисто активная турбина «Герон», в которой применены так называемые колеса Герона (суть та же, что и у эолипила).
В дальнейшем, с начала 1900-х годов паровое турбостроение быстро набирало темпы и Парсонс был в его авангарде. Его многоступенчатыми турбинами оснащались морские суда, сначала опытные (судно «Турбиния», 1896 год, водоизмещение 44 т, скорость 60км/ч – невиданная для того времени), потом военные (пример – броненосец «Дредноут», 18000 т, скорость 40 км/ч, мощность турбоустановки 24700 л.с.) и пассажирские ( пример – однотипные «Мавритания» и «Лузитания», 40000 т, скорость 48 км/ч, мощность турбоустановки 70000 л.с.). Одновременно с этим началось и стационарное турбостроение, например путем установки турбин в качестве приводов на электростанциях ( «Компания Эдисона» в Чикаго).
О газовых турбинах…
Однако, вернемся к нашей основной теме – авиационной и отметим одну достаточно очевидную вещь: столь явно обозначившийся успех в эксплуатации паровых турбин мог иметь для авиации, быстро прогрессирующей своем развитии как раз в то же время, только конструктивно-принципиальное значение.
Применение паровой турбины в качестве силовой установки на летательных аппаратах по понятным причинам было крайне сомнительным. Авиационной турбиной могла стать только принципиально аналогичная, но гораздо более выгодная турбина газовая. Однако, не все было так просто…
По словам Льва Гумилевского, автора популярной в 60-х книги «Создатели двигателей», однажды, в 1902 году , в период начала бурного развития парового турбостроения, Чарлзу Парсонсу, фактически одному из главных тогдашних идеологов этого дела, был задан, в общем-то, шутливый вопрос: «Можно ли «парсонизировать» газовую машину?» (подразумевалась турбина).
Ответ был высказан в абсолютно решительной форме: «Я думаю, что газовую турбину никогда создать не удастся. Об этом не может быть двух мнений.» Пророком инженеру стать не удалось, но основания так говорить у него несомненно были.
Использование газовой турбины, особенно если иметь в виду применение ее в авиации вместо паровой, конечно было соблазнительным, потому что положительные стороны ее очевидны. При всех своих мощностных возможностях она для работы не нуждается в огромных, громоздких устройствах создания пара – котлах и также не менее больших устройствах и системах его охлаждения –конденсаторах, градирнях, прудах охлаждения и т.п.
Нагревателем для газотурбинного двигателя служит небольшая, компактная камера сгорания, расположенная внутри двигателя и сжигающая топливо прямо в потоке воздуха. А холодильника у него просто нет. Или вернее сказать, что он есть, но существует как бы виртуально, потому что отработанный газ отводится в атмосферу, которая и является холодильником. То есть имеется все необходимое для тепловой машины, но при этом все компактно и просто.
Правда, паротурбинная установка тоже может обойтись без «реального холодильника» (без конденсатора) и выпускать пар прямо в атмосферу, но тогда об экономичности можно забыть. Пример тому паровоз – реальный КПД около 6%, 90% энергии у него вылетает в трубу.
Но при таких ощутимых плюсах есть и существенные недостатки, которые, в целом, и стали почвой для категорического ответа Парсонса.
Сжатие рабочего тела для последующего осуществления рабочего цикла в т.ч. и в турбине…
В рабочем цикле паротурбинной установки (цикл Ренкина) работа сжатия воды невелика и требования к осуществляющему эту функцию насосу и его экономичности поэтому также небольшие. В цикле же ГТД, где сжимается воздух, эта работа наоборот очень внушительна, и на нее расходуется больша́я часть располагаемой энергии турбины.
Это уменьшает долю полезной работы, для которой может быть предназначена турбина. Поэтому требования к агрегату сжатия воздуха в плане его эффективности и экономичности очень высоки. Компрессоры в современных авиационных ГТД (в основном осевые) также, как и в стационарных агрегатах наряду с турбинами представляют из себя сложные и дорогие устройства. О них рассказано здесь.
Температура…
Это главная беда для газовой турбины, в том числе авиационной. Дело в том, что если в паротурбинной установке температура рабочего тела после процесса расширения близка к температуре охлаждающей воды, то в газовой турбине она достигает величины нескольких сотен градусов.
Это значит, что в атмосферу (как в холодильник) выбрасывается большое количество энергии, что, конечно, отрицательно сказывается на эффективности всего рабочего цикла, который характеризуется термическим КПД: ηт = Q1 – Q2 / Q1. Здесь Q2 – та самая отводимая в атмосферу энергия. Q1 – энергия подводимая в процесс от нагревателя (в камере сгорания).
Для того, чтобы этот КПД повысить, нужно увеличить Q1 , что равносильно увеличению температуры перед турбиной (то есть в камере сгорания). Но в том-то и дело, что поднять эту температуру можно далеко не всегда. Максимальная величина ее лимитируется самой турбиной и главным условием здесь становится прочность. Турбина работает в очень тяжелых условиях, когда высокая температура сочетается с большими центробежными нагрузками.
Именно этот фактор всегда ограничивал мощностные и тяговые возможности газотурбинных двигателей (во многом зависящие от температуры) и часто становился причиной усложнения и удорожания турбин. Такая ситуация сохранилась и в наше время.
А во времена Парсонса ни металлургическая промышленность, ни аэродинамическая наука пока еще не могли обеспечить решение проблем создания эффективного и экономичного компрессора и высокотемпературной турбины. Не было как соответствующей теории, так и необходимых жаропрочных и жаростойких материалов.
И все-таки попытки были…
Тем не менее, как обычно это бывает, нашлись люди, не боящиеся (или может быть не понимающие :-)) возможных трудностей. Попытки создания газовой турбины не прекращались.
Причем интересно, что и сам Парсонс на заре своей «турбинной» деятельности в своем первом патенте на многоступенчатую турбину отметил возможность ее работы кроме пара также и на продуктах сгорания топлива. Там же рассматривался возможный вариант газотурбинного двигателя, работающего на жидком топливе с компрессором, камерой сгорания и турбиной.
Примеры использования газовых турбин без подведения под это какой-либо теории известны давно. По-видимому, еще Герон в «театре автоматов» использовал принцип воздушной реактивной турбины. Достаточно широко известны так называемые «дымовые вертелы».
А в уже упомянутой книге итальянца (инженер, архитектор, Giovanni Branca, Le Machine) Джованни Бранка есть рисунок «Oгненного колеса». В нем турбинное колесо вращается продуктами сгорания от костра (или очага). Интересно, что сам Бранка бо́льшую часть своих машин не строил, а только высказывал идеи их создания.
Во всех этих «дымовых и огненных колесах» не было стадии сжатия воздуха (газа), и компрессор, как таковой, отсутствовал. Превращение потенциальной энергии, то есть подведенной тепловой энергии сгорания топлива, в кинетическую (разгон) для вращения газовой турбины происходил только за счет действия силы тяжести, когда теплые массы поднимались вверх. То есть использовалось явление конвекции.
Конечно, такие «агрегаты» для реальных машин, например, для привода транспортных средств использованы быть не могли. Однако в 1791 году англичанин Джон Барбер (John Barber) запатентовал «машину для безлошадных перевозок», одним их важнейших узлов которой стала газовая турбина. Это был первый в истории официально зарегистрированный патент на газовую турбину.
Машина использовала газ, получаемый из древесины, угля или нефти, нагреваемых в специальных газогенераторах (ретортах), который после охлаждения поступал в поршневой компрессор, где сжимался вместе с воздухом. Далее смесь подавалась в камеру сгорания, и после уже продукты сгорания вращали турбину. Для охлаждения камер сгорания использовалась вода, и пар, получавшийся в результате, также направлялся на турбину.
Уровень развития тогдашних технологий не позволил воплотить идею в жизнь. Действующая модель машины Барбера с газовой турбиной была построена только в 1972 году фирмой «Kraftwerk-Union AG» для Ганноверской промышленной выставки.
В течение всего 19-го века развитие концепции газовой турбины по вышеописанным причинам продвигалось крайне медленно. Образцов, заслуживающих внимания было мало. Компрессор и высокая температура оставались непреодолимым камнем преткновения. Были попытки использования вентилятора для сжатия воздуха, а также применения воды и воздуха для охлаждения элементов конструкции.
Известен пример газотурбинного двигателя немецкого инженера Франца Штольце, запатентованный в 1872 году и очень похожего по схеме на современные ГТД. В нем многоступенчатый осевой компрессор и многоступенчатая осевая турбина располагались на одном валу.
Воздух после прохождения регенеративного теплообменника делился на две части. Одна поступала в камеру сгорания, вторая подмешивалась к продуктам сгорания перед поступлением их в турбину, снижая их температуру. Это так называемый вторичный воздух, и его использование – прием, широко применяемый в современный ГТД.
Двигатель Штольце испытывался в 1900-1904 годах, однако оказался крайне неэффективен из-за низкого качества компрессора и невысокой температуры перед турбиной.
Бо́льшую часть первой половины 20-го века газовая турбина так и не смогла активно конкурировать с паровой или стать частью ГТД, который бы смог достойно заменить поршневой ДВС. Применение ее на двигателях было в основном вспомогательным. Например, в качестве агрегатов наддува в поршневых двигателях, в том числе и авиационных.
Но с начала 40-х положение стало быстро меняться. Наконец-то были созданы новые жаропрочные сплавы, позволившие радикально поднять температуру газа перед турбиной (до 800˚С и выше), появились достаточно экономичные осевые компрессоры с высоким КПД.
Это не только позволило строить эффективные газотурбинные двигатели, но и, благодаря сочетанию их мощности с относительной легкостью и компактностью, применять их на летательных аппаратах. Началась эпоха реактивной авиации и авиационных газотурбинных двигателей.
Турбины в авиационных ГТД…
Итак… Основная область применения турбин в авиации – это ГТД. Турбина здесь совершает тяжелую работу — вращает компрессор. При этом в ГТД, как и во всяком тепловом двигателе, работа расширения больше работы сжатия.
А турбина как раз и есть расширительная машина, и на компрессор она расходует только часть располагаемой энергии газового потока. Оставшаяся часть (иногда ее называют свободной энергией) может быть использована в полезных целях в зависимости от типа и конструкции двигателя.
Для двигателей непрямой реакции, таких, как турбовальный двигатель (вертолетный ГТД) она расходуется на вращение воздушного винта. В этом случае турбина чаще всего разделена на две части. Первая – это турбина компрессора. Вторая, приводящая винт,- это так называемая свободная турбина. Она вращается самостоятельно и с турбиной компрессора связана только газодинамически.
В двигателях прямой реакции (реактивные двигатели или ВРД) турбина используется только для привода компрессора. Оставшаяся свободная энергия, которая в ТвАД вращает свободную турбину, срабатывается в сопле, превращаясь в кинетическую энергию для получения реактивной тяги.
Посередине между этими крайностями располагаются турбовинтовые двигатели. У них часть свободной энергии расходуется для привода воздушного винта, и некоторая часть формирует реактивную тягу в выходном устройстве (сопле). Правда доля ее в общей тяге двигателя невелика.
По конструкции ТВД могут быть одновальными, в которых свободная турбина не выделена конструктивно и, являясь одним агрегатом, приводит сразу и компрессор и воздушный винт. Пример ТВД Rolls-Royce DART RDa6, а также наш известный ТВД АИ-20.
Могут быть также ТВД с отдельной свободной турбиной, приводящей винт и механически не связанной с остальными узлами двигателя (газодинамическая связь). Пример – двигатель PW127 различных модификаций (самолеты семейства ATR), или ТВД Pratt & Whitney Canada PT6A.
Конечно же, во всех типах ГТД к полезной нагрузке относятся и агрегаты, обеспечивающие работу двигателя и самолетных систем. Это обычно насосы, топливные и гидро-, электрогенераторы и т.п. Все эти устройства приводятся чаще всего от вала турбокомпрессора.
О типах турбин.
Типов на самом деле немало. Только для примера некоторые названия: осевые, радиальные, диагональные, радиально-осевые, поворотно-лопастные и др. В авиации используются только первые две, причем радиальная – достаточно редко. Обе эти турбины получили названия в соответствии с характером движения газового потока в них.
Радиальная.
В радиальной он течет по радиусу. Причем в радиальной авиационной турбине используется центростремительное направление потока, обеспечивающее более высокий КПД (в неавиационной практике есть и центробежное).
Ступень радиальной турбины состоит из рабочего колеса и неподвижных лопаток, формирующих поток на входе в него. Лопатки спрофилированы так, чтобы межлопаточные каналы имели сужающуюся конфигурацию, то есть представляли из себя сопла. Все эти лопатки вместе с элементами корпуса, на которых они смонтированы называются сопловым аппаратом.
Рабочее колесо представляет из себя крыльчатку со специально спрофилированными лопатками. Раскрутка рабочего колеса происходит при прохождении газа в сужающихся каналах между лопатками и воздействии на лопатки.
Радиальные турбины достаточно просты, их рабочие колеса имеют малое количество лопаток. Возможные окружные скорости радиальной турбины при одинаковых напряжениях в рабочем колесе, больше, чем у осевой, поэтому на ней могут срабатываться бо́льшие количества энергии (теплоперепады).
Однако, эти турбины имеют малое проходное сечение и не обеспечивают достаточный расход газа при одинаковых размерах по сравнению с осевыми турбинами. Другими словами, они обладают слишком большими относительными диаметральными размерами, что усложняет их компоновку в едином двигателе.
Кроме того затруднено создание многоступенчатых радиальных турбин из-за больших гидравлических потерь, что ограничивает степень расширения газа в них. Также затруднено осуществление охлаждения таких турбин, что снижает величину возможных максимальных температур газа.
Поэтому применение радиальных турбин в авиации ограничено. Они, в основном, используются в маломощных агрегатах с небольшим расходом газа, чаще всего во вспомогательных механизмах и системах или в двигателях авиамоделей и небольших беспилотных самолетов.
Один из немногих примеров использования радиальной турбины в качестве узла маршевого авиационного ВРД — это двигатель первого настоящего реактивного самолета Heinkel He 178 турбореактивный Heinkel HeS 3. На фото хорошо просматриваются элементы ступени такой турбины. Параметры этого двигателя вполне соответствовали возможности ее использования.
Осевая авиационная турбина.
Это единственный тип турбины, применяемый сейчас в маршевых авиационных ГТД. Главным источником механической работы на валу, получаемой от такой турбины в двигателе являются рабочие колеса или точнее рабочие лопатки (РЛ), установленные на этих колесах и взаимодействующие с энергетически заряженным газовым потоком (сжатым и нагретым).
Венцы неподвижных лопаток, установленных перед рабочими, организуют правильное направление потока и участвуют в превращении потенциальной энергии газа в кинетическую, то есть разгоняют его в процессе расширения с падением давления.
Эти лопатки в комплекте с элементами корпуса, на которых они смонтированы, называются сопловым аппаратом (СА). Сопловой аппарат в комплекте с рабочими лопатками составляет ступень турбины.
Суть процесса… Обобщение сказанного…
В процессе вышеупомянутого взаимодействия с рабочими лопатками происходит превращение кинетической энергии потока в механическую, вращающую вал двигателя.Такое превращение в осевой турбине может происходить двумя способами:
1. Без изменения давления, а значит и величины относительной скорости потока (ощутимо меняется только ее направление – поворот потока) в ступени турбины; 2. С падением давления, ростом относительной скорости потока и некоторым изменением ее направления в ступени.
Турбины, работающие по первому способу называются активными. Газовый поток активно (импульсно) воздействует на лопатки из-за изменения своего направления при их обтекании. При втором способе – реактивные турбины. Здесь помимо импульсного воздействия поток воздействует на рабочие лопатки еще и опосредованно (упрощенно говоря), при помощи реактивной силы, что увеличивает мощность турбины. Дополнительное реактивное воздействие достигается за счет специальной профилировки рабочих лопаток.
О понятиях активности и реактивности в общем, для всех турбин (не только авиационных) упоминалось выше. Однако, в современных авиационных ГТД используются только осевые реактивные турбины.
Так как силовое воздействие на РЛ двойное, то такие осевые турбины еще называют активно-реактивными, что пожалуй более правильно. Такого типа турбина более выгодны в аэродинамическом плане.
Входящие в состав ступени такой турбины неподвижные лопатки соплового аппарата имеют большую кривизну, благодаря чему поперечное сечение межлопаточного канала уменьшается от входа к выходу, то есть сечение f1 меньше сечения f0 . Получается профиль сужающегося реактивного сопла.
Следующие за ними рабочие лопатки также имеют большую кривизну. Кроме того по отношению к набегающему потоку (вектор W1 ) они расположены так, чтобы избежать его срыва и обеспечить правильное обтекание лопатки. На определенных радиусах РЛ также образуют сужающиеся межлопаточные каналы.
Работа ступени авиационной турбины.
Газ подходит к сопловому аппарату с направлением движения, близким к осевому и скоростью С0 (дозвуковая). Давление в потоке Р0 , температура Т0 . Проходя межлопаточный канал поток разгоняется до скорости С1 с поворотом до угла α1 = 20°- 30°. При этом давление и температура падают до величин Р1 и Т1 соответственно. Часть потенциальной энергии потока превращается в кинетическую.
Так как рабочие лопатки перемещаются с окружной скоростью U, то в межлопаточный канал РЛ поток входит уже с относительной скоростью W1 , которая определяется разностью С1 и U (векторно). Проходя по каналу, поток взаимодействует с лопатками, создавая на них аэродинамические силы Р, окружная составляющая которой Рu и заставляет турбину вращаться.
Из-за сужения канала между лопатками поток разгоняется до скорости W2 (реактивный принцип), при этом также происходит ее поворот (активный принцип). Абсолютная скорость потока С1 уменьшается до С2 — кинетическая энергия потока превращается в механическую на валу турбины. Давление и температура падают до величин Р2 и Т2 соответственно.
Абсолютная скорость потока при прохождении ступени несколько увеличивается от С0 до осевой проекции скорости С2 . В современных турбинах эта проекция имеет величину 200 — 360 м/с для ступени.
Ступень профилируется так, чтобы угол α2 был близок к 90°. Отличие обычно составляет 5-10°. Это делается для того, чтобы величина С2 была минимальной. Особенно это важно для последней ступени турбины (на первой или средних ступенях допускается отклонение от прямого угла до 25°). Причина тому – потери с выходной скоростью, которые как раз и зависят от величины скорости С2 .
Это те самые потери, которые в свое время так и не дали Лавалю возможности поднять КПД своей первой турбины. Если двигатель реактивный, то оставшаяся энергия может быть сработана в сопле. А вот, например, для вертолетного двигателя, который не использует реактивную тягу, важно, чтобы скорость потока за последней ступенью турбины была как можно меньше.
Таким образом в ступени активно-реактивной турбины расширение газа (снижение давления и температуры), превращение и срабатывание энергии (теплоперепада) происходит не только в СА, но и в рабочем колесе. Распределение этих функций между РК и СА характеризует параметр теории двигателей, называемый степенью реактивности ρ.
Он равен отношению теплоперепада в рабочем колесе к теплоперепаду во всей ступени. Если ρ = 0, то ступень (или вся турбина) – активная. Если же ρ > 0, то ступень реактивная или точнее для нашего случая активно-реактивная. Так как профилировка рабочих лопаток меняется по радиусу, то параметр этот (как впрочем и некоторые другие) вычисляется по среднему радиусу (сечение В-В на рисунке изменения параметров в ступени).
Для современных ГТД степень реактивности турбин находится в пределах 0,3-0,4. Это значит, что только 30-40% общего теплоперепада ступени (или турбины) срабатывается в рабочем колесе. 60-70% срабатывается в сопловом аппарате.
Кое-что о потерях.
Как уже было сказано, любая турбина (или ее ступень) превращает подведенную к ней энергию потока в механическую работу. Однако, в реальном агрегате этот процесс может обладать различной эффективностью. Часть располагаемой энергии обязательно расходуется «впустую», то есть превращается в потери, которые надо учитывать и принимать меры к их минимизации для повышения эффективности работы турбины, то есть увеличения ее КПД.
Потери складываются из гидравлических и потерь с выходной скоростью. Гидравлические потери включают в себя профильные и концевые. Профильные — это, по сути дела, потери на трение, так как газ, обладая определенной вязкостью, взаимодействует с поверхностями турбины.
Обычно такие потери в рабочем колесе составляют около 2-3%, а в сопловом аппарате — 3-4%. Меры по уменьшению потерь заключаются в «облагораживании» проточной части расчетным и экспериментальным путем, а также корректного расчета треугольников скоростей для потока в ступени турбины, точнее говоря выбора наивыгоднейшей окружной скорости U при заданной скорости С1 . Эти действия обычно характеризуются параметром U/C1 . Окружная скорость на среднем радиусе в ТРД равна 270 – 370 м/с.
Гидравлическое совершенство проточной части ступени турбины учитывает такой параметр, как адиабатический КПД. Иногда его еще называют лопаточным, потому что он учитывает потери на трение в лопатках ступени (СА и РЛ). Есть еще один КПД для турбины, характеризующий ее именно как агрегат для получения мощности, то есть степень использования располагаемой энергии для создания работы на валу.
Это так называемый мощностной (или эффективный) КПД. Он равен отношению работы на валу к располагаемому теплоперепаду. Этот КПД учитывает потери с выходной скоростью. Они обычно составляют для ТРД около 10-12% (в современных ТРД С0 = 100 -180 м/с, С1 = 500-600 м/с, С2 = 200-360 м/с).
Для турбин современных ГТД величина адиабатического КПД составляет около 0,9 — 0,92 для неохлаждаемых турбин. В случае, если турбина охлаждаемая, то этот КПД может быть ниже на 3-4%. Мощностной КПД равен обычно 0,78 — 0,83. Он меньше адиабатического на величину потерь с выходной скоростью.
Что касается концевых потерь, то это так называемые «потери на перетекание». Проточную часть невозможно абсолютно изолировать от остальных частей двигателя из-за присутствия вращающихся узлов в комплексе с неподвижными (корпуса + ротор). Поэтому газ из областей с повышенным давлением стремится перетечь в области с пониженным давлением. В частности, например, из области перед рабочей лопаткой в область за ней через радиальный зазор между пером лопатки и корпусом турбины.
Такой газ не участвует в процессе преобразования энергии потока в механическую, потому что не взаимодействует с лопатками в этом плане, то есть возникают концевые потери (или потери в радиальном зазоре). Они составляют около 2-3% и отрицательно влияют как на адиабатический, так и на мощностной КПД, уменьшают экономичность ГТД, причем довольно ощутимо.
Известно, например, что увеличение радиального зазора с 1 мм до 5 мм в турбине диаметром 1 м, может привести к увеличению удельного расхода топлива в двигателе более, чем на 10%.
Понятно, что совсем избавиться от радиального зазора невозможно, но его стараются минимизировать. Это достаточно трудно, потому что авиационная турбина – агрегат сильно нагруженный. Точный учет всех факторов, влияющих на величину зазора достаточно труден.
Режимы работы двигателя часто меняются, а значит меняется величина деформаций рабочих лопаток, дисков, на которых они закреплены, корпусов турбины в результате изменения величин температуры, давления и центробежных сил.
Здесь же необходимо учитывать величину остаточной деформации при длительной эксплуатации двигателя. Плюс к этому эволюции, выполняемые самолетом, влияют на деформацию ротора, что тоже меняет величину зазоров.
Обычно зазор оценивается после останова прогретого двигателя. В этом случае тонкий внешний корпус остывает быстрее массивных дисков и вала и, уменьшаясь в диаметре, задевает за лопатки. Иногда величина радиального зазора просто выбирается в пределах 1,5-3% от от длины пера лопатки.
Для того, чтобы избежать повреждения лопаток, в случае касания их о корпус турбины, в нем часто размещают специальные вставки из материала более мягкого, нежели материал лопаток (например, металлокерамика). Кроме того используются бесконтактные уплотнения. Обычно это лабиринтные или сотовые лабиринтные уплотнения.
В этом случае рабочие лопатки бандажируются на концах пера и на бандажных полках уже размещаются уплотнения или клинья (для сот). В сотовых уплотнениях из-за тонких стенок сот площадь контакта очень мала (в 10 раз меньше обычного лабиринта), поэтому сборка узла ведется без зазора. После приработки величина зазора обеспечивается около 0,2 мм.
Аналогичные способы уплотнений зазоров используются для уменьшения утечки газа из проточной части (например, в междисковое пространство).
САУРЗ…
Это так называемые пассивные методы управления радиальным зазором. Кроме этого на многих ГТД, разработанных (и разрабатываемых) с конца 80-х годов, устанавливаются так называемые «системы активного регулирования радиальных зазоров» (САУРЗ — активный метод). Это автоматические системы, и суть их работы заключается в управлении тепловой инерционностью корпуса (статора) авиационной турбины.
Ротор и статор (внешний корпус) турбины отличаются друг от друга по материалу и по «массивности». Поэтому на переходных режимах они расширяются по разному. Например, при переходе двигателя с пониженного режима работы на повышенный, высокотемпературный, тонкостенный корпус быстрее (чем массивный ротор с дисками)) прогревается и расширяется, увеличивая радиальный зазор между собой и лопатками. Плюс к этому перемены давления в тракте и эволюции самолета.
Чтобы этого избежать, автоматическая система (обычно главный регулятор типа FADEC) организует подачу охлаждающего воздуха на корпус турбины в необходимых количествах. Нагрев корпуса, таким образом, стабилизируется в необходимых пределах, а значит меняется величина его линейного расширения и, соответственно, величина радиальных зазоров.
Все это позволяет экономить топливо, что очень важно для современной гражданской авиации. Наиболее эффективно системы САУРЗ применяются в турбинах низкого давления на ТВРД типа GE90, CFM56, Trent 900, ПС-90А и некоторых других.
Значительно реже, однако достаточно эффективно для синхронизации темпов прогрева ротора и статора применяется принудительный обдув дисков турбины (а не корпуса). Такие системы применяются на двигателях CF6-80 и PW4000.
———————-
В турбине регламентируются также и осевые зазоры. Например между выходными кромками СА и входными РЛ обычно зазор в пределах 0,1-0,4 от хорды РЛ на среднем радиусе лопаток. Чем меньше этот зазор, тем меньше потери энергии потока за СА (на трение и выравнивание поля скоростей за СА). Но при этом растет вибрация РЛ из-за попеременного попадания из областей за корпусами лопаток СА в межлопаточные области.
Немного общего о конструкции…
Осевые авиационные турбины современных ГТД в конструктивном плане могут иметь различную форму проточной части.
Dср = (Dвн+Dн) /2
1. Форма с постоянным диаметром корпуса (Dн). Здесь внутренний и средний диаметры по тракту уменьшаются.
Такая схема хорошо вписывается в габариты двигателя (и фюзеляжа самолета). Обладает хорошим распределением работы по ступеням, особенно для двухвальных ТРД.
Однако, в этой схеме велик так называемый угол раструба, что чревато отрывом потока от внутренних стенок корпуса и, следовательно, гидравлическими потерями.
При проектировании стараются не допускать величину угла раструба более 20°.
2. Форма с постоянным внутренним диаметром(Dв).
Средний диаметр и диаметр корпуса увеличиваются по тракту. Такая схема плохо вписывается в габариты двигателя. В ТРД из-за «разбежки» потока от внутреннего корпуса, необходимо его доворачивать на СА, что влечет за собой гидравлические потери.
Схема более целесообразна к применению в ТРДД.
3. Форма с постоянным средним диаметром(Dср). Диаметр корпуса увеличивается, внутренний – уменьшается.
Схема обладает недостатками двух предыдущих. Но при этом расчет такой турбины достаточно прост.
Современные авиационные турбины чаще всего многоступенчаты. Главная причина тому (как уже говорилось выше) – большая располагаемая энергия турбины в целом. Для обеспечения оптимальной сочетания окружной скорости U и скорости С1 (U/C1 – оптимальное), а значит высокого общего КПД и хорошей экономичности необходимо распределение всей имеющейся энергии по ступеням.
При этом, правда, сама турбина конструктивно усложняется и утяжеляется. Из-за небольшого температурного перепада на каждой ступени (он распределен на все ступени) бо́льшее количество первых ступеней подвергается действию высоких температур и часто требует дополнительного охлаждения.
В зависимости от типа двигателя количество ступеней может быть разным. Для ТРД обычно до трех, для двухконтурных двигателей до 5-8 ступеней. Обычно, если двигатель многовальный, турбовентиляторный, то турбина имеет несколько (по числу валов) каскадов, каждый из которых приводит свой агрегат и сам может быть многоступенчатым (в зависимости от степени двухконтурности).
Например в трехвальном двигателе Rolls-Royce Trent 900 турбина имеет три каскада: одноступенчатый для привода компрессора высокого давления, одноступенчатый для привода промежуточного компрессора и пятиступенчатый для привода вентилятора. Совместная работа каскадов и определение необходимого числа ступеней в каскадах описывается в «теории двигателей» отдельно.
Сама авиационная турбина, упрощенно говоря, представляет собой конструкцию, состоящую из ротора, статора и различных вспомогательных элементов конструкции. Статор состоит из внешнего корпуса, корпусов сопловых аппаратов и корпусов подшипников ротора. Ротор обычно представляет из себя дисковую конструкцию в котором диски соединены с ротором и между собой с использованием различных дополнительных элементов и способов крепления.
На каждом диске, как основе рабочего колеса расположены рабочие лопатки. При конструировании лопатки стараются выполнять с меньшей хордой из соображения меньшей ширины обода диска, на котором они установлены, что уменьшает его массу. Но при этом для сохранения параметров турбины приходится увеличивать длину пера, что может повлечь за собой бандажирование лопаток для увеличения прочности.
Лопатка крепится в диске с помощью замкового соединения. Такое соединение – это одно из самых нагруженных элементов конструкции в ГТД. Все нагрузки, воспринимаемые лопаткой, передаются на диск через замок и достигают очень больших значений, тем более, что из-за разности материалов, диск и лопатки обладают различными коэффициентами линейного расширения, да к тому же из-за неравномерности поля температур нагреваются по разному.
С целью оценки возможности уменьшения нагрузки в замковом соединении и увеличения, тем самым, надежности и срока службы турбины, проводятся исследовательские работы, среди которых достаточно перспективными считаются эксперименты по биметаллическим лопаткам или применению в турбинах рабочих колес-блисков.
При использовании биметаллических лопаток уменьшаются нагрузки в замках их крепления на диске за счет изготовления замковой части лопатки из материала, аналогичного материалу диска (или близкого по параметрам). Перо лопатки изготавливается из другого металла, после чего они соединяются с применением спецтехнологий (получается биметалл).
Блиски, то есть рабочие колеса, в которых лопатки выполнены за одно целое с диском, вообще исключают наличие замкового соединения, а значит и лишних напряжений в материале рабочего колеса. Такого типа узлы уже применяются в компрессорах современных ТРДД. Однако, для них значительно усложняется вопрос ремонта и уменьшаются возможности высокотемпературного использования и охлаждения в авиационной турбине.
Наиболее распространенный способ крепления лопаток в тяжело нагруженных дисках турбин – это так называемая «елочка». Если же нагрузки умеренные, то могут быть применены и другие типы замков, которые более просты в конструктивном отношении, например цилиндрические или Т-образные.
Контроль…
Так как условия работы авиационной турбины крайне тяжелые, а вопрос надежности, как важнейшего узла летательного аппарата имеет первостепенный приоритет, то проблема контроля состояния элементов конструкции стоит в наземной эксплуатации на первом месте. В особенности это касается контроля внутренних полостей турбины, где как раз и располагаются наиболее нагруженные элементы.
Осмотр этих полостей конечно невозможен без использования современной аппаратуры дистанционного визуального контроля. Для авиационных газотурбинных двигателей в этом качестве выступают различного вида эндоскопы (бороскопы). Современные устройства такого типа достаточно совершенны и обладают большими возможностями.
Ярким примером может служить портативный измерительный видеоэндоскоп Vucam XO немецкой компании ViZaar AG. Обладая небольшими размерами и массой (менее 1,5 кг), этот аппарат тем не менее очень функционален и располагает внушительными возможностями как осмотра, так и обработки получаемой информации.
Vucam XO абсолютно мобилен. Весь его комплект располагается в небольшом пластмассовом кейсе. Видеозонд с большим количеством легкосменяемых оптических адаптеров обладает полноценной артикуляцией в 360°, диаметром 6,0 мми может иметь различную длину (2,2м; 3,3м; 6,6м).
Бороскопические проверки с использованием подобных эндоскопов предусмотрены в регламентных правилах для всех современных авиадвигателей. В турбинах обычно осматривается проточная часть. Зонд эндоскопа проникает во внутренние полости авиационной турбины через специальные контрольные порты.
Они представляют из себя отверстия в корпусе турбины, закрытые герметичными пробками (обычно резьбовыми, иногда подпружиненными). В зависимости от возможностей эндоскопа (длина зонда) может понадобиться проворачивание вала двигателя. Лопатки (СА и РЛ) первой ступени турбины могут осматриваться через окна на корпусе камеры сгорания, а последней ступени — через сопло двигателя.
Что позволит поднять температуру…
Одно из генеральных направлений развития ГТД всех схем – увеличение температуры газа перед турбиной. Это позволяет ощутимо увеличивать тягу без увеличения расхода воздуха, что может привести к уменьшению лобовой площади двигателя и росту удельной лобовой тяги.
В современных двигателях температура газа (после факела) на выходе из камеры сгорания может достигать 1650°С (с тенденцией к росту), поэтому для нормальной работы турбины при столь больших термических нагрузках необходимо принятие специальных, часто предохранительных мер.
Первое (и самое простоев этой ситуации) – использование жаропрочных и жаростойких материалов, как металлических сплавов, так и (в перспективе) специальных композитных и керамических материалов, которые используются для изготовления самых нагруженных деталей турбины – сопловых и рабочих лопаток, а также дисков. Самые нагруженные из них – это, пожалуй, рабочие лопатки.
Металлические сплавы – это в основном сплавы на основе никеля (температура плавления — 1455°С) с различными легирующими добавками. В современные жаропрочные и жаростойкие сплавы для получения максимальных высокотемпературных характеристик добавляют до 16-ти наименований различных легирующих элементов.
Химическая экзотика…
В их числе, например, хром, марганец, кобальт, вольфрам, алюминий , титан, тантал, висмут и даже рений или вместо него рутений и другие. Особенно перспективен в этом плане рений (Re – рений, применяется в России), используемый сейчас вместо карбидов, но он чрезвычайно дорог и запасы его невелики. Также перспективным считается использование силицида ниобия.
Кроме того поверхность лопатки часто покрывается нанесенным по особой технологии специальным теплозащитным слоем (антитермальное покрытие — thermal-barrier coating или ТВС), значительно уменьшающим величину теплопотока в тело лопатки (термобарьерные функции) и предохраняющим ее от газовой коррозии (жаростойкие функции).
На рисунке (микрофото) показан теплозащитный слой на лопатке турбины высокого давления современного ТРДД. Здесь TGO (Thermally Grown Oxide) – термически растущий оксид; Substrate – основной материал лопатки; Bond coat – переходный слой. В состав ТВС сейчас входят никель, хром, алюминий, иттрий и др. Также проводятся опытные работы по использованию керамических покрытий на основе оксида циркония, стабилизированного оксидом циркония (разработки ВИАМ).
Для примера…
Достаточно широкой известностью в двигателестроении, начиная с послевоенного периода и в настоящее время пользуются жаропрочные никелевые сплавы компании Special Metals Corporation – США, содержащие не менее 50% никеля и 20% хрома, а также титан, алюминий и немало других составляющих, добавляемых в небольших количествах.
В зависимости от профильного предназначения (РЛ, СА, диски турбин, элементы проточной части, сопла, компрессора и др., а также неавиационные области применения), своего состава и свойств они объединены в группы, каждая из которых включает различные варианты сплавов.
Некоторые из этих групп: Nimonic, Inconel, Incoloy, Udimet/Udimar, Monel и другие. Например, сплав Nimonic 90, разработанный еще в 1945 году и применявшийся для изготовления элементов авиационных турбин ( в основном лопатки), сопел и частей летательных аппаратов, имеет состав: никель – 54%минимум, хром – 18-21%, кобальт – 15-21%, титан – 2-3%, алюминий – 1-2%, марганец – 1%, цирконий -0,15% и другие легирующие элементы (в малых количества). Этот сплав производится и по сей день.
В России (СССР) разработкой такого типа сплавов и других важных материалов для ГТД занимался и успешно занимается ВИАМ (Всероссийский научно-исследовательский институт авиационных материалов). В послевоенное время институт разрабатывал деформируемые сплавы (типа ЭИ437Б), с начала 60-х создал целую серию высококачественных литьевых сплавов (об этом ниже).
————-
Однако, практически все жаропрочные металлические материалы выдерживают без охлаждения температуры примерно до ≈ 1050°С .
Поэтому:
Вторая, широко используемая мера, это применение различных систем охлаждения лопаток и других конструктивных элементов авиационных турбин. Без охлаждения в современных ГТД обойтись пока нельзя, несмотря на применение новых высокотемпературных жаропрочных сплавов и специальных способов изготовления элементов.
Среди систем охлаждения выделяют два направления: системы открытые и замкнутые. Замкнутые системы могут использовать принудительную циркуляцию жидкого теплоносителя в системе лопатки — радиатор или же использовать принцип «термосифонного эффекта».
В последнем способе движение теплоносителя происходит под действием гравитационных сил, когда более теплые слои вытесняют более холодные. В качестве теплоносителя здесь может быть использован, например, натрий или сплав натрия и калия.
Однако, замкнутые системы из-за большого количества трудно решаемых проблем в авиационной практике не применяются и находятся в стадии экспериментальных исследований.
Зато в широком практическом применении находятся открытые системы охлаждения. Хладагентом здесь служит воздух, подаваемый обычно под различным давлением из-за различных же ступеней компрессора внутрь лопаток турбины. В зависимости от максимальной величины температуры газа, при которой целесообразно применение этих систем, их можно разделить на три вида: конвективный, конвективно-пленочный (или заградительный) и пористый.
При конвективном охлаждении воздух подается внутрь лопатки по специальным каналам и, омывая внутри нее наиболее нагретые участки, выходит наружу в поток в области с более низким давлением. При этом могут быть использованы различные схемы организации течения воздуха в лопатках зависимости от формы каналов для него: продольная, поперечная или петлеобразная (смешанная или усложненная).
Наиболее простая схема с продольными каналами вдоль пера. Здесь выход воздуха организуется обычно в верхней части лопатки через бандажную полку. В такой схеме имеет место довольно большая неравномерность температуры вдоль пера лопатки – до 150-250˚, что неблагоприятно влияет на прочностные свойства лопатки. Схема используется на двигателях с температурой газа до ≈ 1130ºС.
Еще один способ конвективного охлаждения (1) подразумевает наличие внутри пера специального дефлектора (тонкостенная оболочка – вставляется внутрь пера), который способствует подводу охлаждающего воздуха сначала на наиболее нагретые участки. Дефлектор образует своего рода сопло, выдувающее воздух в переднюю часть лопатки. Получается струйное охлаждение наиболее нагретой части. Далее воздух, омывая остальные поверхности выходит через продольные узкие отверстия в пере.
В такой схеме температурная неравномерность значительно ниже, кроме того сам дефлектор, который вставляется в лопатку под натягом по нескольким центрирующим поперечным пояскам, благодаря своей упругости, служит в роли демпфера и гасит колебания лопаток. Такая схема используется при максимальной температуре газа ≈ 1230°С.
Так называемая полупетлевая схема позволяет добиться относительно равномерного поля температур в лопатке. Это достигается экспериментальным подбором расположения различных ребер и штырьков, направляющих потоки воздуха, внутри тела лопатки. Эта схема допускает максимальную температуру газа до 1330°С.
Сопловые лопатки конвективно охлаждаются аналогично рабочим. Они обычно выполняются двухполостными с дополнительными ребрами и штырьками для интенсификации процесса охлаждения. В переднюю полость у передней кромки подается воздух более высокого давления, чем в заднюю (из-за разных ступеней компрессора) и выпускается в различные зоны тракта с целью поддержания минимально необходимой разности давлений для обеспечения требуемой скорости движения воздуха в каналах охлаждения.
Конвективно-пленочное охлаждение (2) применяется при еще более высокой температуре газа – до 1380°С. При этом способе часть охлаждающего воздуха через специальные отверстия в лопатке выпускается на ее наружную поверхность, создавая тем самым своего рода заградительную пленку, которая защищает лопатку от соприкосновения с горячим потоком газа. Этот способ используется как для рабочих, так и для сопловых лопаток.
Третий способ – пористое охлаждение (3). В этом случае силовой стержень лопатки с продольными каналами покрывается специальным пористым материалом, который позволяет осуществить равномерный и дозированный выпуск охладителя на всю поверхность лопатки, омываемую газовым потоком.
Это пока перспективный способ, в массовой практике использования ГТД не применяющийся из-за сложностей с подбором пористого материала и большой вероятностью достаточно быстрого засорения пор. Однако, в случае решения этих проблем предположительно возможная температура газа при таком типе охлаждения может достигать 1650°С.
Диски турбины и корпуса СА также охлаждаются воздухом из-за различных ступеней компрессора при его прохождении по внутренним полостям двигателя с омыванием охлаждаемых деталей и последующим выпуском в проточную часть.
Из-за достаточно большой степени повышения давления в компрессорах современных двигателей сам охлаждающий воздух может иметь довольно высокую температуру. Поэтому для повышения эффективности охлаждения применяют мероприятия по предварительному снижению этой температуры.
Для этого воздух перед подачей в турбину на лопатки и диски может пропускаться через специальные решетки профилей, аналогичные СА турбины, где воздух подкручивается в направлении вращения рабочего колеса, расширяясь и охлаждаясь при этом. Величина охлаждения может составить 90-160°.
Для такого же охлаждения могут быть использованы воздухо-воздушные радиаторы, охлаждаемые воздухом второго контура. На двигателе АЛ-31Ф такой радиатор дает понижение температуры до 220° в полете и 150° на земле.
На нужды охлаждения авиационной турбины от компрессора забирается достаточно большое количество воздуха. На различных двигателях – до 15-20%. Это существенно увеличивает потери, которые учитываются при термогазодинамическом расчете двигателя. На некоторых двигателях установлены системы, снижающие подачу воздуха на охлаждение (или вообще ее закрывающие) при пониженных режимах работы двигателя, что положительно влияет на экономичность.
При оценке эффективности системы охлаждения обычно учитывается и дополнительные гидравлические потери на лопатках вследствие изменения их формы при выпуске охлаждающего воздуха. КПД реальной охлаждаемой турбины примерно на 3-4% ниже, чем неохлаждаемой.
Кое-что об изготовлении лопаток…
На реактивных двигателях первого поколения турбинные лопатки в основном изготавливались методом штамповки с последующей длительной обработкой. Однако, в 50-х годах специалисты ВИАМ убедительно доказали, что перспективу повышения уровня жаропрочности лопаток открывают именно литейные а не деформируемые сплавы. Постепенно был осуществлен переход на это новое направление (в том числе и на Западе).
В настоящее время в производстве используется технология точного безотходного литья, что позволяет выполнять лопатки со специально профилированными внутренними полостями, которые используются для работы системы охлаждения (так называемая технология литья по выплавляемым моделям).
Это, по сути дела единственный сейчас способ получения охлаждаемых лопаток. Он тоже совершенствовался с течением времени. На первых этапах при литьевой технологии изготавливали лопатки с разноразмерными зернами кристаллизации, которые ненадежно сцеплялись между собой, что значительно уменьшало прочность и ресурс изделия.
В дальнейшем, с применением специальных модификаторов, начали изготавливать литые охлаждаемые лопатки с однородными, равноосными, мелкими структурными зернами. Для этого ВИАМ в 60-х годах разработал первые серийные отечественные жаропрочные сплавы для литья ЖС6, ЖС6К, ЖС6У, ВЖЛ12У.
Их рабочая температура была на 200° выше, чем у рапространенного тогда деформируемого (штамповка) сплава ЭИ437А/Б (ХН77ТЮ/ЮР). Лопатки, изготавливаемые из этих материалов работали минимум по 500 часов без визуально видимых признаком разрушения. Такого типа технология изготовления используется и сейчас. Тем не менее межзеренные границы остаются слабым местом структуры лопатки, и именно по ним начинается ее разрушение.
Поэтому с ростом нагрузочных характеристик работы современных авиационных турбин (давление, температура, центробежные нагрузки) появилась необходимость разработки новых технологий изготовления лопаток, потому что многозеренная структура уже во многом не удовлетворяла утяжеленным условиям эксплуатации.
Так появился «метод направленной кристаллизации». При таком методе в застывающей отливке лопатки образуются не отдельные равноосные зерна металла, а длинные столбчатые кристаллы, вытянутые строго вдоль оси лопатки. Подобного рода структура значительно увеличивает сопротивление лопатки излому. Это похоже на веник, который сломать очень трудно, хотя каждый из составляющих его прутиков ломается без проблем.
Такая технология была впоследствии доработана до еще более прогрессивного «метода монокристаллического литья», когда одна лопатка представляет из себя практически один целый кристалл. Этого типа лопатки сейчас также устанавливаются в современных авиационных турбинах. Для их изготовления используются специальные, в том числе так называемые ренийсодержащие сплавы.
В 70-х и 80-х годах в ВИАМе были разработаны сплавы для литья турбинных лопаток с направленной кристаллизацией: ЖС26, ЖС30, ЖС32, ЖС36, ЖС40, ВКЛС-20, ВКЛС-20Р; а в 90-х – коррозионно-стойкие сплавы длительного ресурса: ЖСКС1 и ЖСКС2.
Далее, работая в этом направлении, ВИАМ с начала 2000 года по настоящее время создал высокорениевые жаропрочные сплавы третьего поколения: ВЖМ1 (9,3%Re), ВЖМ2 (12%Re), ЖС55 (9%Re) и ВЖМ5 (4%Re). Для еще большего совершенствования характеристик за последние 10 лет были проведены экспериментальные исследования, результатом которых стали рений-рутенийсодержащие сплавы четвертого – ВЖМ4 и пятого поколений ВЖМ6.
В качестве помощников…
Как уже говорилось ранее, в ГТД применяются только реактивные (или активно-реактивные) турбины. Однако, в заключении стоит вспомнить, что среди используемых авиационных турбин есть и активные. Они, в основном, выполняют второстепенные задачи и в работе маршевых двигателей участия не принимают.
И тем не менее роль их часто бывает очень важна. В этом случае речь о воздушных стартерах, используемых для запуска ТРДД. Существуют различные виды стартерных устройств, применяемых для раскрутки роторов газотурбинных двигателей. Воздушный стартер занимает среди них, пожалуй, самое видное место.
Агрегат этот, на самом деле, несмотря на важность функций, принципиально достаточно прост. Основным узлом здесь является одно- или двухступенчатая активная турбина, которая вращает через редуктор и коробку приводов ротор двигателя (в ТРДД обычно ротор низкого давления).
Сама турбина раскручивается потоком воздуха, поступающего от наземного источника, либо бортовой ВСУ, либо от другого, уже запущенного двигателя самолета. На определенном этапе цикла запуска, стартер автоматически отключается.
В подобного рода агрегатах в зависимости от требуемых выходных параметров могут также использоваться и радиальные турбины. Они же могут применяться в системах кондиционирования воздуха в салонах самолетов в качестве элемента турбохолодильника, в котором эффект расширения и снижения температуры воздуха на турбине используется для охлаждения воздуха, поступающего в салоны.
Кроме того, как активные осевые, так и радиальные турбины применяются в системах турбонаддува поршневых авиационных двигателей. Такая практика началась еще до превращения турбины в важнейший узел ГТД и продолжается по сей день.
Аналогичные системы с использованием турбокомпрессоров находят применение в автомобилях и вообще в различных системах подачи сжатого воздуха.
Таким образом авиационная турбина и во вспомогательном смысле отлично служит людям.
———————————
Ну вот, пожалуй, и все на сегодня. На самом деле здесь еще много о чем можно написать и в плане дополнительных сведений, и в плане более полного описания уже сказанного. Тема ведь очень обширная. Однако, нельзя объять необъятное :-). Для общего ознакомления, пожалуй, достаточно. Спасибо, что дочитали до конца.
До новых встреч…
В завершение картинки, » невместившиеся» в текст.
спасибо вам большое =))
Спасибо большое!!!! Великолепно!!!
Спасибо, было очень приятно вспомнить институт. И есть вопрос практический не могу осилить. Как получать работу с турбины понятно, а какие лопатки должны быть у турбины, что бы она забирала работу, или попросту тормозила, да еще при этом расширяла воздух?
регулируемый сопловой аппарат для этого используют , смотрите конструкцию отечественного танкового гтд 1250
Замечательная обзорная статья! Огромное спасибо! Получил ответы сразу на несколько вопросов.
Огромное спасибо, за проделанный труд!
Очень лекго усвоились многие темы, благодаря вашим статьям
Юрий, колоссальное спасибо за Вашу работу!
Я далекий от авиации человек, но техникой в целом очень интересуюсь, и Ваши материалы читаю с огромным удовольствием.
Побольше бы таких энтузиастов!
Скучаю по научпопу СССР… По таким книжкам, какие были раньше: без соплей и трогательных историй домохозяек (как любят показывать по замечательным Discovery и National Geographic), а по делу, нормальным языком, с качественными иллюстрациями, и формулами, доступными для понимания человеком с более-менее образованием. Вот как у Вас, например. Давно такого качественного материала не читал.
Желаю Вам успехов!
хорошая статья спасибо!
все ок
Юрий, у меня к Вам несколько дилетантский вопрос.
Какова степень расширения топливно-воздушной смеси в камере сгорания?
Нигде не могу найти хотя бы приблизительный показатель.
Спасибо.
В ТРД расширение происходит на турбине и в сопле, а не в КС.
Не могу Вам ответить, потому что никогда не встречал такого параметра. Собственно в камере сгорания как такового расширения не происходит (подобно поршневому ДВС). Увеличение объема рабочего тела при постоянном давлении (по циклу Брайтона) происходит за счет динамики потока, плюс некоторое увеличение его скорости в камере сгорания. А потом у же в турбине и сопле имеет место расширение с ростом объема, падением давления (и ростом скорости).
*** Юрий
Два вопроса по направлению вращения турбины:
На реактивный самолёт с одним двигателем разрабатывают одновальный двигатель.
1) Из каких соображений выбирают, в какую сторону будет крутиться вал.
Наверное для работы двигатели это безразлично.
Возможно есть определенные удобства при сборке и эксплуатации?
И учитывая, что компрессор с турбиной и валом это большой гироскоп, то при пилотировании (маневрировании) самолет, наверное, будет вести себя по-разному, в зависимости от направления вращения вала.
2) Как принято определять вращения вала — смотреть со стороны компрессора или сопла?
Вы знаете, не могу ответить однозначно на этот вопрос. Как-то никогда им не задавался ). Мне кажется, нет какой-то существенной причины на этот счет. Во всяком случае она мне неизвестна. Знаю только, что практически все известные двигатели имеют направление вращения левое, в т.ч. и многороторные. Направление вращения определяется обычно из положения «по полету», то есть со стороны сопла. А гироскопический момент существует, конечно и влияет на пилотирование самолета (одно- и многодвигательного). Это учитывается при проектировании в характеристиках самолета и в практическом пилотировании.
Не понятно, что такое левое вращение.
Это против часовой стрелки или по часовой?
Левое — со стороны сопла против часовой стрелки.
Если не изменяет память, на Су-24 турбина используется для охлаждения воздуха, который идет на наддув кабины.
Не совсем корректно. В системе кондиционирования воздуха современных ЛА применяется турбохолодильники, на турбине которых срабатывается теплоперепад (происходит преобразование внутренней энергии потока воздуха в кинетическую и последующее превращение части кинетической энергии в работу), вследствие чего воздух действительно охлаждается. Полученная энергия (работа) как правило используется для привода компрессора, нагнетающего воздух в воздухо-воздушный теплообменник.
Ну, в общем-то, HZ66 это похоже и имел в виду. К тому же ВВР работает только в полете…
Я писал о принципах работы. Охлаждение там происходит за счет расширения в турбине.
Вот, вспомнил: в система наддува кабины СУ-24 нет никаких теплообменников. Горячий воздух отбирается от компрессора, если не ошибаюсь правого двигателя, затем он делится на два потока. Один — охлаждается на специальной турбине, а затем смешивается со вторым в пропорциях, задаваемых термостатом.
В системе кондиционирования Су-24/М/МР предусмотрен воздухо-воздушный радиатор. Его воздухозаборник расположен на гаргроте в средней части фюзеляжа…
А какую роль он там выполнял?
Ту же, что и турбохолодильник. ВВРы стоят в общей цепи охлаждения воздуха (как одна из ступеней) после забора его из двигателя. Работает конечно только в полете. ВВРы есть практически на всех военных самолетах, часто они имеют кольцевую форму — по каналу воздухозаборника (на МиГах например, (21, 23, 25))
Если не ошибаюсь, ВВР на Су-24 используется в системе кондиционирования не для наддува кабины, а для охлаждения оборудования.
Мда, а начиналось с шарика с трубочками.)
Спасибо за статью. Нравится стиль Вашего изложения. Далеко не мурзиловское «тут вдувает, тут выдувает». Но человеку, имеющему даже нормальное среднее образование, вполне доступно для понимания.
Удачи Вам, а нам новых интересных статей.)
Огромнейшая Вам благодарность за такую скрупулезную работу по подбору материала и представлению его в доступном для неспециалистов виде. Благодаря таким энтузиастам как Вы появляется больше людей которых используют ресурсы Всемирной паутины не только в качестве развлечения но и для повышения эрудиции и самообразования. Ждем новых статей про авиацию!
Спасибо! Постараюсь соответствовать :-)…
Юрий! Огромное вам спасибо за подробный разбор темы!
Пару лет назад я учил теорию ATPL на европейскую лицензию. Но там все же были непонятные пробелы. Вы их как раз восполнили. Мне был нужен уровень глубже своих учебников, но не такой хардкор как в инженерных ВУЗах.
Очень хорошо, что даете практические примеры и историю развития темы. Это облегчает понимание сухой теории.
Юрий, огромное спасибо Вам за ваши статьи. Даже представить трудно сколько усилий и времени они могут забирать у Вас, но поверьте на слово, они того стоит: легко читаемые, легко усваиваемые, не сильно погруженные в цифры и формулы, с рисунками и пояснениями. Пусть они и не являются научными пособием,но для людей из авиации, а также вообще несвязанных с ней, очень интересно подчеркнуть что-то новое или вспомнить что-то старое. Крайняя статья «О турбинах . . .» вообще вызвала море положительных эмоций. Надеюсь, мы ещё не раз увидим подобные публикации. Поэтому говорю еще раз спасибо за все статьи,которые Вы публикуете и за время, которое посвящаете написанию всего этого материала.
Не за что… Трудов уходит очень много, но значит не зря, раз людям нравится :-)…